References
<A NAME="RW21305ST-1A">1a</A>
Marafat A.
McGuirk PR.
Helquist P.
J. Org. Chem.
1979,
44:
3888
<A NAME="RW21305ST-1B">1b</A>
Anderson RJ.
Coleman JE.
Piers E.
Wallace DJ.
Tetrahedron Lett.
1997,
38:
317
<A NAME="RW21305ST-1C">1c</A>
Tanak H.
Kuroda A.
Marusawa H.
Hatanaka H.
Kino T.
Goto T.
Hashimoto M.
J. Am. Chem. Soc.
1987,
109:
5031
<A NAME="RW21305ST-1D">1d</A>
Ishibashi Y.
Ohba S.
Nishyama S.
Yamamura S.
Tetrahedron Lett.
1996,
37:
2997
<A NAME="RW21305ST-2">2</A>
Senokuchi K.
Nakai H.
Nakayama Y.
Odagaki Y.
Sakaki K.
Kato M.
Maruyama T.
Miyazaki T.
Ito H.
Kamiyasu K.
Kim S.
Kawamura M.
Hamanaka N.
J. Med. Chem.
1995,
38:
2521
<A NAME="RW21305ST-3">3</A>
Watanabe T.
Hayashi K.
Yoshimatsu S.
Sakai K.
Takeyama S.
Takashima K.
J. Med. Chem.
1980,
23:
50
<A NAME="RW21305ST-4A">4a</A>
Denmark SE.
Amburgey J.
J. Am. Chem. Soc.
1993,
115:
10386
<A NAME="RW21305ST-4B">4b</A>
Kocienski P.
Dixon NJ.
Wadman S.
Tetrahedron Lett.
1988,
29:
2353
<A NAME="RW21305ST-4C">4c</A>
Myers AG.
Kukkola PJ.
J. Am. Chem. Soc.
1990,
112:
8208
<A NAME="RW21305ST-4D">4d</A>
Creton I.
Marek I.
Brasseur D.
Jestin JL.
Normant JF.
Tetrahedron Lett.
1994,
35:
6873
For reviews, see:
<A NAME="RW21305ST-5A">5a</A>
Ciganek E.
Org. React.
1997,
51:
201
<A NAME="RW21305ST-5B">5b</A>
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RW21305ST-5C">5c</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
For recent examples, see:
<A NAME="RW21305ST-6A">6a</A>
Das B.
Mahender G.
Chowdhury N.
Banerjee J.
Synlett
2005,
1000
<A NAME="RW21305ST-6B">6b</A>
Kim JN.
Lee HJ.
Lee KY.
Gong JH.
Synlett
2002,
173
<A NAME="RW21305ST-6C">6c</A>
Kabalka GW.
Venkataiah B.
Dong G.
Org. Lett.
2003,
5:
3803
<A NAME="RW21305ST-6D">6d</A>
Kabalka GW.
Venkataiah B.
Dong G.
Tetrahedron Lett.
2003,
44:
4673
<A NAME="RW21305ST-6E">6e</A>
Chung YM.
Gong JH.
Kim TH.
Kim JN.
Tetrahedron Lett.
2001,
42:
9023
<A NAME="RW21305ST-6F">6f</A>
Shi M.
Jiang JK.
Feng YS.
Org. Lett.
2000,
2:
2397
<A NAME="RW21305ST-7A">7a</A>
Li J.
Qian WX.
Zhang YM.
Tetrahedron
2004,
60:
5793
<A NAME="RW21305ST-7B">7b</A>
Li J.
Xu H.
Zhang YM.
Tetrahedron Lett.
2005,
46:
1931
<A NAME="RW21305ST-7C">7c</A>
Li J.
Wang XX.
Zhang YM.
Synlett
2005,
1039
<A NAME="RW21305ST-7D">7d</A>
Li J.
Wang XX.
Zhang YM.
Tetrahedron Lett.
2005,
46:
5233
<A NAME="RW21305ST-8">8</A> The CsOH·H2O is commercially available (Aldrich). One example of CsOH·H2O-catalyzed reactions, see:
Tzalis D.
Knochel P.
Angew. Chem. Int. Ed.
1999,
38:
1463
<A NAME="RW21305ST-9">9</A>
Rose PM.
Clifford AA.
Rayner CM.
Chem. Commun.
2002,
968
<A NAME="RW21305ST-10">10</A>
Basavaiah D.
Bakthadoss M.
Jayapal Reddy G.
Synth. Commun.
2002,
32:
689
<A NAME="RW21305ST-11">11</A> All Baylis-Hillman adducts were prepared according to literature:
Hoffman HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1983,
22:
795
<A NAME="RW21305ST-12">12</A>
Typical Experimental Procedure.
In a 25-mL flask was charged with CsOH·H2O (50 mg, 0.3 mmol) and THF (10 mL). The suspension was stirred at r.t. for 10 min.
The Baylis-Hillman adduct 1 (1 mmol) was added to the flask and stirred at r.t. for 0.5-1 h. The reaction mixture
was poured into Et2O (50 mL), washed with H2O (2 × 25 mL) and brine (35 mL). The combined ethereal layers were dried over MgSO4. After evaporation of solvent the residue was purified by chromatography using cyclohexane-EtOAc
(6:1) as eluent.
<A NAME="RW21305ST-13">13</A>
Spectroscopic data of 2b: oil. 1H NMR (400 MHz, CDCl3): δ = 2.34 (s, 3 H, CH
3), 2.37 (s, 3 H, CH
3), 3.71 (s, 3 H, OCH
3), 3.79 (s, 3 H, OCH
3), 4.20 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.33 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.35 (s, 1 H, O-CH-Ar), 6.00 (t, 1 H, 2
J = 1.6 Hz, terminal olefin-H), 6.35 (t, 1 H, 2
J = 1.6 Hz, terminal olefin-H), 7.13 (d, 2 H, J = 8.0 Hz, ArH), 7.15 (d, 2 H, J = 8.0 Hz, ArH), 7.27 (d, 2 H, J = 8.0 Hz, ArH), 7.39 (d, 2 H, J = 8.0 Hz, ArH), 7.87 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 21.16, 21.39, 51.74, 51.97, 63.72, 79.28, 125.53, 127.81, 128.93, 129.18, 129.97,
131.80, 136.29, 137.60, 139.63, 140.84, 143.24, 144.95, 166.42, 168.15. IR (film):
ν = 3073, 3025, 1721, 1631, 1594, 1066 cm-1. MS (70 eV): m/z (%) = 394 [M+]. Anal. Calcd for C24H26O5: C, 73.08; H, 6.64. Found: C, 73.25; H, 6.70. According to NOESY experiment, there
is no NOE correlation between the signals of the internal olefin proton and the allylic
methylene protons.
<A NAME="RW21305ST-14">14</A>
Selected spectroscopic data for compound 2:
Compound 2a: oil. 1H NMR (400 MHz, CDCl3): δ = 3.69 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 4.23 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.34 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.33 (s, 1 H, OCH-Ph), 5.90 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 6.31 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 7.25-7.51 (m, 10 H, ArH), 7.91 (s, 1 H, ArCH=). IR (film): ν = 3078, 3030, 1720, 1633, 1600, 1067 cm-1. MS (70 eV):
m/z (%) = 366 [M+]. Anal. Calcd for C22H22O5: C, 72.12; H, 6.05. Found: C, 72.25; H, 6.01.
Compound 2c: oil. 1H NMR (400 MHz, CDCl3): δ = 3.70 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 4.20 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.29 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.34 (s, 1 H, O-CH-Ar), 5.94 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 6.36 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 7.29-7.36 (m, 6 H, ArH), 7.41 (d, 2 H, J = 8.0 Hz, ArH), 7.85 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 51.80, 52.08, 63.56, 78.79, 125.90, 128.43, 128.74, 129.11, 131.09, 131.36,
132.95, 133.80, 135.54, 137.83, 140.52, 143.54, 166.05, 167.58. IR (film): ν = 3070,
3026, 1724, 1632, 1593, 1118 cm-1. MS (70 eV): m/z (%) = 434 [M+], 436 [M+ + 2]. Anal. Calcd for C22H20Cl2O5: C, 60.70; H, 4.63. Found: C, 60.56; H, 4.69.
Compound 2d: oil. 1H NMR (400 MHz, CDCl3): δ = 3.74 (s, 3 H, OCH
3), 3.82 (s, 3 H, OCH
3), 4.25 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.32 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.76 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 5.83 (s, 1 H, O-CH-Ar), 6.41 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 7.22-7.42 (m, 6 H, ArH), 7.52-7.63 (m, 2 H, ArH), 8.04 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 52.15, 52.40, 64.72, 76.07, 127.08, 127.13, 127.51, 129.21, 129.40, 128.64,
129.73, 130.19, 130.66, 131.19, 131.49, 133.28, 136.88, 139.84, 141.38, 141.83, 166.48,
167.61. IR (film): ν = 3066, 3025, 1721, 1635, 1592, 1067 cm-1. MS (70 eV): m/z (%) = 434 [M+], 436 [M+ + 2]. Anal. Calcd for C22H20Cl2O5: C, 60.70; H, 4.63. Found: C, 60.64; H, 4.56.
Compound 2e: oil. 1H NMR (400 MHz, CDCl3): δ = 3.79 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 3.81 (s, 3 H, OCH
3), 3.84 (s, 3 H, OCH
3), 4.25 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.34 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.35 (s, 1 H, O-CH-Ar), 6.01 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 6.36 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 6.86 (d, 2 H, J = 8.0 Hz, ArH), 6.90 (d, 2 H, J = 8.0 Hz, ArH), 7.32 (d, 2 H, J = 8.0 Hz, ArH), 7.48 (d, 2 H, J = 8.0 Hz, ArH), 7.86 (s, 1 H, ArCH=). IR (film): ν = 3075, 3020, 1721, 1629, 1606, 1120 cm-1. MS (70 eV): m/z (%) = 426 [M+]. Anal. Calcd for C24H26O7: C, 67.59; H, 6.15. Found: C, 67.40; H, 6.24.
Bis-allyl ethers were found to be useful intermediates in organic synthesis, see:
<A NAME="RW21305ST-15A">15a</A>
Ben Ammar H.
Le Nôtre J.
Salem M.
Kaddachi MT.
Dixneuf PH.
J. Organomet. Chem.
2002,
662:
63
<A NAME="RW21305ST-15B">15b</A>
Le Nôtre J.
Brissieux L.
Sémeril D.
Bruneau C.
Dixneuf PH.
Chem. Commun.
2002,
1772